1,164 research outputs found

    Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: A phase-field study

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2013Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior. © 2013 The Minerals, Metals & Materials Society and ASM International

    Doping, density of states and conductivity in polypyrrole and poly(p-phenylene vinylene)

    Get PDF
    The evolution of the density of states (DOS) and conductivity as function of well controlled doping levels in OC_1C_10-poly(p-phenylene vinylene) [OC_1C_10-PPV] doped by FeCl_3 and PF_6, and PF_6 doped polypyrrole (PPy-PF_6 have been investigated. At a doping level as high as 0.2 holes per monomer, the former one remains non-metallic, while the latter crosses the metal-insulator transition. In both systems a similar almost linear increase in DOS as function of charges per unit volume c* has been observed from the electrochemical gated transistor data. In PPy-PF_6, when compared to doped OC_1C_10-PPV, the energy states filled at low doping are closer to the vacuum level; by the higher c* at high doping more energy states are available, which apparently enables the conduction to change to metallic. Although both systems on the insulating side show log(sigma) proportional to T^-1/4 as in variable range hopping, for highly doped PPy-PF_6 the usual interpretation of the hopping parameters leads to seemingly too high values for the density of states.Comment: 4 pages (incl. 6 figures) in Phys. Rev.

    Taxonomic diversity and identification problems of oncaeid microcopepods in the Mediterranean Sea

    Get PDF
    The species diversity of the pelagic microcopepod family Oncaeidae collected with nets of 0.1-mm mesh size was studied at 6 stations along a west-to-east transect in the Mediterranean Sea down to a maximum depth of 1,000 m. A total of 27 species and two form variants have been identified, including three new records for the Mediterranean. In addition, about 20, as yet undescribed, new morphospecies were found (mainly from the genera Epicalymma and Triconia) which need to be examined further. The total number of identified oncaeid species was similar in the Western and Eastern Basins, but for some cooccurring sibling species, the estimated numerical dominance changed. The deep-sea fauna of Oncaeidae, studied at selected depth layers between 400 m and the near-bottom layer at >4,200 m depth in the eastern Mediterranean (Levantine Sea), showed rather constant species numbers down to ∼3,000 m depth. In the near-bottom layers, the diversity of oncaeids declined and species of Epicalymma strongly increased in numerical importance. The taxonomic status of all oncaeid species recorded earlier in the Mediterranean Sea is evaluated: 19 out of the 46 known valid oncaeid species are insufficiently described, and most of the taxonomically unresolved species (13 species) have originally been described from this area (type locality). The deficiencies in the species identification of oncaeids cast into doubt the allegedly cosmopolitan distribution of some species, in particular those of Mediterranean origin. The existing identification problems even of well-described oncaeid species are exemplified for the Oncaea mediacomplex, including O. media Giesbrecht, O. scottodicarloi Heron & Bradford-Grieve, and O. waldemari Bersano & Boxshall, which are often erroneously identified as a single species (O. media). The inadequacy in the species identification of Oncaeidae, in particular those from the Atlantic and Mediterranean, is mainly due to the lack of reliable identification keys for Oncaeidae in warm-temperate and/or tropical seas. Future efforts should be directed to the construction of identification keys that can be updated according to the latest taxonomic findings, which can be used by the non-expert as well as by the specialist. The adequate consideration of the numerous, as yet undescribed, microcopepod species in the world oceans, in particular the Oncaeidae, is a challenge for the study of the structure and function of plankton communities as well as for global biodiversity estimates

    {\it Ab initio} 27Al^{27}Al NMR chemical shifts and quadrupolar parameters for Al2O3Al_2O_3 phases and their precursors

    Full text link
    The Gauge-Including Projector Augmented Wave (GIPAW) method, within the Density Functional Theory (DFT) Generalized Gradient Approximation (GGA) framework, is applied to compute solid state NMR parameters for 27Al^{27}Al in the α\alpha, θ\theta, and κ\kappa aluminium oxide phases and their gibbsite and boehmite precursors. The results for well-established crystalline phases compare very well with available experimental data and provide confidence in the accuracy of the method. For γ\gamma-alumina, four structural models proposed in the literature are discussed in terms of their ability to reproduce the experimental spectra also reported in the literature. Among the considered models, the Fd3ˉmFd\bar{3}m structure proposed by Paglia {\it et al.} [Phys. Rev. B {\bf 71}, 224115 (2005)] shows the best agreement. We attempt to link the theoretical NMR parameters to the local geometry. Chemical shifts depend on coordination number but no further correlation is found with geometrical parameters. Instead our calculations reveal that, within a given coordination number, a linear correlation exists between chemical shifts and Born effective charges

    Controlled Compositional Disorder in Er3+:Y2SiO5 Provides a Wide-Bandwidth Spectral Hole Burning Material at 1.5mum

    Get PDF
    The subgigahertz spectral bandwidth of the lowest energy 1.5mum Er3+ I15/24--\u3eI13/24 optical transition in Er3+:Y2SiO5 has been increased to ˜22GHz by intentionally introducing compositional disorder through codoping with Eu3+ impurity ions. This illustrates a general bandwidth control technique for spectral hole burning device applications including spatial-spectral holography and quantum computing. Coherence measurements by stimulated photon echoes demonstrated that the increased disorder does not perturb the dynamical properties of the Er3+ transition and, thus, gives the desired bandwidth enhancement without penalty in other properties. The echo measurements and model analysis also show that phonon-driven spin flips of Er3+ ions in the ground state are responsible for the spectral diffusion that was observed for the optical transition. These results collectively give a better understanding of both the nature of disorder and of the ion-ion interactions in doped materials, and they also enable the high bandwidths required for signal processing and memory applications at 1.5mum based on spectral hole burning

    Optical Decoherence and Spectral Diffusion at 1.5 μM in Er3+: Y2 SiO5 versus Magnetic Field, Temperature, and Er3+ Concentration

    Get PDF
    The mechanisms and effects of spectral diffusion for optical transitions of paramagnetic ions have been explored using the inhomogeneously broadened 1536 nm I15∕24→I13∕24 transition in Er3+:Y2SiO5. Using photon echo spectroscopy, spectral diffusion was measured by observing the evolution of the effective coherence lifetimes over time scales from 1μs to 20 ms for magnetic-field strengths from 0.3 to 6.0 T, temperatures from 1.6 to 6.5 K, and nominal Er3+ concentrations of 0.0015%, 0.005%, and 0.02%. To understand the effect of spectral diffusion on material decoherence for different environmental conditions and material compositions, data and models were compared to identify spectral diffusion mechanisms and microscopic spin dynamics. Observations were successfully modeled by Er3+−Er3+ magnetic dipole interactions and Er3+ electron spin flips driven by the one-phonon direct process. At temperatures of 4.2 K and higher, spectral diffusion due to Y89 nuclear spin flips was also observed. The success in describing our extensive experimental results using simple models provides an important capability for exploring larger parameter spaces, accelerating the design and optimization of materials for spatial-spectral holography, and spectral hole-burning devices. The broad insight into spectral diffusion mechanisms and dynamics is applicable to other paramagnetic materials, such as those containing Yb3+ or Nd3+
    corecore